THE SPEED OF CONVERGENCE OF A MARTINGALE

BY HARRY KESTEN

ABSTRACT

Let X_m $n \ge 0$, be a martingale with respect to the σ -fields \mathscr{F}_n and let $B_n^2 = \sum_{l \ge n} E\{(X_l - X_{l-1})^2 \mid \mathscr{F}_{l-1}\}$. It is known that if $B_1^2 < \infty$ on some set Ω_0 then $X_\infty = \lim X_n$ exists and is finite a.e. on Ω_0 . We show that under suitable conditions there exists a constant $\eta < \infty$ for which $\limsup B_n^{-1} \{\log \log B_n^{-2}\}^{-\frac{1}{2}} |X_\infty - X_{n-1}| \le \sqrt{2(\eta + 1)}$. If "the fluctuations of B_n are small" (in the sense of the Corollary) then $\eta = 0$ and the usual upper bound of a law of the iterated logrithm results. This upper bound is not necessarily achieved, though.

1. Introduction and statement of results

Throughout X_n , $n \ge 0$, is a fixed square integrable martingale with respect to the increasing family of σ -fields $\{\mathcal{F}_n\}_{n\ge 0}$. We denote the corresponding martingale difference sequence by

$$Y_n = X_n - X_{n-1}, \qquad n \ge 1,$$

and set

$$v_n^2 = E\{Y_n^2 \mid \mathcal{F}_{n-1}\}, \qquad B_n^2 = \sum_{l=n}^{\infty} v_l^2.$$

Stout's law of the iterated logarithm ([11], see also [12], corol. 5.4.2 and p. 303) states that

(1.1)
$$\limsup_{n\to\infty} \left\{ \left(\sum_{1}^{n} v_{i}^{2} \right) \log \log \left(\sum_{1}^{n} v_{i}^{2} \right) \right\}^{-\frac{1}{2}} X_{n} = \sqrt{2},$$

if $B_1^2 = \infty$ and some additional hypotheses hold. Since martingales can be imbedded in Brownian motion this result is closely related to the law of the iterated logarithm for a Wiener process $\{W(t)\}_{t\geq 0}$:

[†] Research supported in part by the NSF under Grant No. MCS 72-04534A04. Received June 7, 1977 and in revised form August 20, 1978

(1.2)
$$\limsup_{t \to \infty} (t \log \log t)^{-\frac{1}{2}} W(t) = \sqrt{2} \quad \text{w.p.1.}$$

(Compare the proof the law of the iterated logarithm for i.i.d. random variables in [2], theorem 13.25 and corollary 12.33.) It is well known that Brownian motion also satisfies a law of the iterated logarithm for small times, i.e. for each fixed s

(1.3)
$$\limsup \{|t-s|\log\log|t-s|^{-1}\}^{-1/2}(W(t)-W(s))=\sqrt{2} \text{ w.p.1}$$

(see [2], theorem (12.29)). The theorem below can be viewed as a partial analogue of (1.3) for martingales for which $B_1^2 < \infty$ on a set of positive probability.

If the increments Y_n are actually independent, better results have already been proven by Chow and Teicher [3] and Barbour [1]. The martingale case seems to have been considered first by Heyde [6]. Heyde's conditions imply all our conditions except for (1.5), after a suitable truncation of the Y_n 's (see "Special Case" below). Example (i) below describes a situation where Heyde's theorem does not apply, but where one still has an iterated logarithm bound. Nevertheless, one will normally try to apply Heyde's theorem first; his conditions are less cumbersome and his conclusions considerably stronger than ours.

THEOREM. Let X_n , Y_n , \mathscr{F}_n , v_n^2 and B_n^2 be as above. Assume that there exist constants $0 < \eta_1 < 1$, $\eta_2 > 0$, a sequence of $\{\mathscr{F}_n\}$ stopping times T_n which increase to ∞ w.p.1, a sequence of random variables a_n and a set $\Omega_0 \in V \mathscr{F}_n$ such that the following conditions (1.4)–(1.8) hold a.e. on Ω_0 :

$$(1.4) B_1^2(\omega) < \infty,$$

$$(1.5) Y_n(\omega) = o(B_n(\omega)\{\log\log B_n^{-2}(\omega)\}^{-\frac{1}{2}}),$$

(1.6)
$$a_n \text{ is } \mathscr{F}_{T_n} \text{ measurable, } a_n \ge 0 \text{ and } \liminf_{n \to \infty} \frac{1}{n} \log \frac{1}{a_n} > 0,$$

(1.7)
$$a_n^2(\omega) \le B_{T_n}^2(\omega) \le a_n^2(\omega) \exp(n^{\eta_1}) \text{ eventually}$$

and

(1.8)
$$B_{T_{n+1}}^2(\omega) \ge n^{-\eta_2} B_{T_n}^2(\omega) \text{ eventually.}$$

Then $X_{\infty} = \lim X_n$ exists a.e. on Ω_0 and

We interpret the left hand side of (1.9) as zero when both numerator and denominator vanish for large n. Since $Y_i = 0$ for all $i \ge n$ a.e. on the set $\{B_n = 0\}$, (1.9) is trivial on the set $\Omega_1 = \{\omega : B_n(\omega) = 0 \}$ for some n. Thus we can remove Ω_1 from Ω_0 and in the proof in section 2 we tacitly assume $\Omega_0 \cap \Omega_1 = \emptyset$.

(1.9)
$$\limsup_{n \to \infty} \frac{|X_{\infty} - X_{n-1}|}{B_n \{\log \log B_n^{-2}\}^{\frac{1}{2}}} = \limsup_{n \to \infty} \frac{\left|\sum_{n=1}^{\infty} Y_{n}\right|}{B_n \{\log \log B_n^{-2}\}^{\frac{1}{2}}}$$
$$\leq \sqrt{2(\eta_1 + \eta_2 + 1)} \ a.e. \ on \ \Omega_0.$$

COROLLARY. If (1.4)–(1.8) hold a.e. on Ω_0 for all $\eta_1, \eta_2 > 0$, then

(1.10)
$$\limsup_{n \to \infty} \frac{|X_{\infty} - X_{n-1}|}{B_n \{\log \log B_n^{-2}\}^{\frac{1}{2}}} \le \sqrt{2}$$

a.e. on Ω_0 .

Special Case. Assume that for some sequence of stopping times $T_n \uparrow \infty$ and constants $b_n > 0$, K > 0 we have

(1.11)
$$P\left\{b_n^2 \leq B_{T_n}^2 - B_{T_{n+1}}^2 = \sum_{T_n \leq i < T_{n+1}} v_i^2 \leq Kb_n^2\right\} = 1,$$

and as $n \to \infty$

(1.12)
$$\max_{T_n < l \le T_{n+1}} |Y_l| = o \left\{ \sum_{n=1}^{\infty} b_l^2 \right\}^{\frac{1}{2}} \left\{ \log \log \left(\sum_{n=1}^{\infty} b_l^2 \right)^{-1} \right\}^{-\frac{1}{2}} \quad \text{w.p.1.}$$

If in addition for all $\eta > 0$

(1.13)
$$\sum_{1}^{\infty} b_{n}^{2} < \infty, \quad \liminf_{n \to \infty} \frac{1}{n} \log \left\{ \sum_{n}^{\infty} b_{i}^{2} \right\}^{-1} > 0,$$
and
$$\sum_{n+1}^{\infty} b_{i}^{2} \ge n^{-\eta} \sum_{n}^{\infty} b_{i}^{2} \text{ eventually,}$$

then (1.10) holds w.p.1. (Merely take $a_n^2 = \sum_{n=0}^{\infty} b_i^2$.)

This case often applies with K=1 and some b_n^2 if v_n^2 is non-random. In the case where the Y_n are independent Chow and Teicher [3, theorem 2] have proven (1.10) with equality, even without the condition (1.12). Heyde [6] also obtains equality in (1.10), but we already pointed out that his conditions imply ours after a truncation with the exception of (1.5). Indeed, in [6] theorem 1(b)

$$s_n^2 = E\left\{\sum_{l=n}^{\infty} Y_l^2\right\} < \infty,$$

and b(iii) in [6] implies that for each $\varepsilon > 0$

$$|Y_{i}| < \varepsilon s_{i} \text{ eventually and}$$

$$\frac{1}{s_{n}} \sum_{l=n}^{\infty} E\{Y_{i}I[|Y_{l}| < \varepsilon s_{i} | \mathcal{F}_{l-1}\} \rightarrow 0 \quad \text{w.p.1}$$

(note that we call X_n what [6] calls Y_n and vice versa). Under the conditions of [6] we can now take

$$a_n = 2^{-n}, T_n = \sup\{k : s_k^2 \ge 2^{-n}\}.$$

Then for

$$\tilde{Y}_{l}(\varepsilon) = Y_{l}I[|Y_{l}| < \varepsilon s_{l}] - E\{Y_{l}I[|Y_{l}| < \varepsilon s_{l}] | \mathcal{F}_{l-1}\}$$

one has

(1.15)
$$P\left\{\sum_{T_{n} \leq i < T_{n+1}} \left[\tilde{Y}_{i}^{2}(\varepsilon) - E\{\tilde{Y}_{i}^{2}(\varepsilon) \mid \mathscr{F}_{i-1}\} \right] \geq \varepsilon' 2^{-n} \right\}$$

$$\leq (\varepsilon')^{-2} 2^{2n} \sum_{T_{n} \leq i < T_{n+1}} E\{\tilde{Y}_{i}^{4}(\varepsilon)\}.$$

By b(iv) of [6] the sum of (1.15) over n converges. This together with b(i) of [6] in the a.s. version and (1.14) imply

$$2^{n+1} \sum_{T_n \leq l \leq T_{n+1}} E\{\tilde{Y}_l^2(\varepsilon) \, \big| \, \mathscr{F}_{l-1}\} \to \eta \quad \text{w.p.1}$$

 $(\eta \text{ as in } [6])$. Thus, for any sequence $\delta_n \downarrow 0$

$$\delta_n \, 2^{-n-1} \leq \sum_{T_n \leq I < T_{n+1}} E\{\tilde{Y}_i^2(\varepsilon) \, \big| \, \mathcal{F}_{i-1}\} \leq \delta_n^{-1} 2^{-n-1}$$

eventually.

Thus under the conditions of theorem 1(b) in [6] a simple variant of (1.11) and (1.13) apply to the $\tilde{Y}_{i}(\varepsilon)$.

EXAMPLES. (i) To illustrate the relation with [6] further we consider the Polya urn example of [6], sect. 3. At stage n there are $b_n(r_n)$ black (red) balls in an urn. A ball is drawn at random and replaced and then a random number c_n of balls of the color drawn are added to the urn. If \mathcal{F}_n is an increasing sequence of σ -fields such that b_n , r_n and c_n are \mathcal{F}_n measurable, then $X_n = b_n/(b_n + r_n)$ is a martingale. Heyde considers only the case where $c_n = c$, a constant. It is not hard to vary c_n in such a way that b(i) of [6] fails. In this example

$$|Y_n| \le K_n$$
, and $v_n^2 = X_{n-1}(1-X_{n-1})K_n^2 \sim X_\infty(1-X_\infty)K_{n,n}^2$

where

$$K_n = \frac{c_{n-1}}{b_{n-1} + c_{n-1} + c_{n-1}}$$

(see [6], formula (22)). If $1 \le c_n \le C$ w.p.1, then

$$\frac{1}{b_0+c_0+nC} \leq K_n \leq \frac{C}{b_0+c_0+n} .$$

On the set

$$(1.16) 0 < X_{\infty} < 1$$

one has eventually for any $\varepsilon > 0$

$$\frac{1}{2}X_{\infty}(1-X_{\infty})C^{-2}n^{-1} \leq B_{n}^{2} \leq (1+\varepsilon)X_{\infty}(1-X_{\infty})C^{2}n^{-1}.$$

Taking $T_n = 2^n$, $a_n^2 = n^{-1}2^{-n}$ we now easily obtain

$$\limsup_{n \to \infty} (n/\log \log n)^{1/2} |X_n - X_{\infty}| \le C(2X_{\infty}(1 - X_{\infty}))^{1/2}$$

a.e. on the set (1.16). Note that

$$E\{(X_{\infty}-X_{n-1})^2\,\big|\,\mathscr{F}_{n-1}\}=E\{B_n^2\,\big|\,\mathscr{F}_{n-1}\}\leq 2C^2n^{-1}$$

from which one easily deduces that (1.16) always has a positive probability when $b_0 > 0$, $r_0 > 0$. With some more work one actually can shown that (1.16) holds w.p.1.

(ii) Another example is obtained by taking $X_n = W(\tau_n)$, where $W(\cdot)$ is a Wiener process as above and τ_n an increasing sequence of stopping times for $W(\cdot)$. Assume that

(1.17)
$$c_n^2 \le \tau_n - \tau_{n-1} \le K' c_n^2 \quad \text{w.p.1}$$

for some constants K', $c_n > 0$ satisfying

(1.18)
$$\sum_{1}^{\infty} c_{n}^{2} < \infty,$$

$$c_{n}^{2} \log c_{n}^{-1} = o \left\{ \sum_{l=n}^{\infty} c_{l}^{2} / \left(\log \log \left(\sum_{l=n}^{\infty} c_{l}^{2} \right)^{-1} \right) \right\}.$$

Then

$$\limsup_{n \to \infty} \frac{|W(\tau) - W(\tau_n)|}{\{(\tau - \tau_n) \log \log (\tau - \tau_n)^{-1}\}^{1/2}} \le \sqrt{2K'} \quad \text{w.p.1.}$$

Indeed $c_n^2 \le v_n^2 \le K'c_n^2$ by (1.17) and since

$$\sum_{l=n+1}^{\infty} c_l^2 \sim \sum_{l=n}^{\infty} c_l^2$$

we can take

$$T_n = \sup \left\{ k : \sum_{k=0}^{\infty} c_i^2 \geq (2K')^{-2n} \right\}.$$

Then

$$(2K')^{-2n} \leq B_{T_n}^2 \leq (2K')^{-2n+1}$$

eventually, so that (1.11) holds with $b_n^2 = (2K')^{-2n}(1 - 1/2K')$, K = 2K'/(2K' - 1). Also (1.12) holds, since by the uniform Hölder condition for the Wiener process

$$|Y_{l}| = |W(\tau_{l}) - W(\tau_{l-1})| = O\{(\tau_{l} - \tau_{l-1})\log(\tau_{l} - \tau_{l-1})^{-1}\}^{1/2}$$
$$= O\{c_{l}(\log c_{l}^{-1})^{1/2}\}.$$

This result gains in interest when it is compared with the results of Orey and Taylor in [10]: there is w.p.1, an everywhere dense set $S \subset [0, \infty)$ of Hausdorff dimension one, such that for all $s \in S$,

$$\limsup_{t \uparrow s} \frac{|W(s) - W(t)|}{\{|s - t| \log \log |s - t|^{-1}\}^{\frac{1}{2}}} = \infty.$$

Apparently if (1.17), (1.18) hold, either $\tau \not\in S$ or if $\tau \in S$, τ_n misses the points where $|W(\tau) - W(\tau_n)|$ is much bigger than $\{(\tau - \tau_n)\log\log(\tau - \tau_n)^{-1}\}^{\frac{1}{2}}$.

Counterexamples. The following examples show some of the inherent limitations on weakening the hypotheses or proving a converse of our theorem.

(i) This example shows that (1.9) is essentially sharp. Let $0 < \beta < 2\gamma$, $\sigma_k^2 \downarrow 0$ and L_k be constants such that L_k is an integer and

(1.19)
$$\sigma_k^2 L_k^2 = (k!)^{-\gamma}, \qquad k^{-\gamma-1} L_k \to 1.$$

Now take $X_0 = T_0 = 0$ and define Y_l and T_k such that $T_k - 1$ is a stopping time as follows: On the set $\{T_k - 1 \le l < T_{k+1} - 1\} \in \mathcal{F}_l$, the conditional distribution of Y_{l+1} , given \mathcal{F}_l will be normal with mean zero and variance σ_k^2 . Moreover,

(1.20)
$$T_{k+1} - 1 = \inf \left\{ n \ge T_k + L_k k^{\frac{1}{2}\beta} (\log k)^{\frac{1}{2}(\beta+3)} : \sum_{n-L_k+1}^n Y_n \right\}$$

$$\ge \left\{ (\beta+2) L_k \sigma_k^2 \log \log (L_k \sigma_k^2)^{-1} \right\}^{\frac{1}{2}},$$

provided there exists an $n \le T_k + 2L_k k^{\frac{1}{2}\beta} (\log k)^{\frac{1}{2}(\beta+3)}$ with this property. Otherwise take

(1.21)
$$T_{k+1} = T_k + \left[2L_k k^{\frac{1}{2}\beta} (\log k)^{\frac{1}{2}(\beta+3)}\right] + 1.$$

In other words, after $T_k - 1$ we add a large number of independent normal

random variables with mean zero and variance σ_k^2 . We try to add just so many of these random variables that the sum of the last L_k of them is exceptionally large.

By definition $v_l^2 = \sigma_k^2$ for $T_k \le l < T_{k+1}$ so that

(1.22)
$$B_{T_k}^2 = \sum_{i=0}^{\infty} (T_{k+j+1} - T_{k+j}) \sigma_{k+j}^2.$$

Also, by definition

$$(1.23) L_k k^{\frac{1}{2}\beta} (\log k)^{\frac{1}{2}(\beta+3)} \le T_{k+1} - T_k \le 2L_k k^{\frac{1}{2}\beta} (\log k)^{\frac{1}{2}(\beta+3)} + 1.$$

(1.22), (1.23) and (1.19) show that

$$k^{\frac{1}{2}\beta-\gamma-1}(\log k)^{\frac{1}{2}(\beta+3)}(k!)^{-\gamma} \sim L_k k^{\frac{1}{2}\beta}(\log k)^{\frac{1}{2}(\beta+3)}\sigma_k^2 \leq B_{T_k}^2$$

$$\leq 3k^{\frac{1}{2}\beta-\gamma-1}(\log k)^{\frac{1}{2}(\beta+3)}(k!)^{-\gamma}$$

from which (1.4), (1.6)-(1.8) with any $\eta_1 > 0$, $\eta_2 > \gamma$ and

$$a_n^2 = \frac{1}{2}n^{\frac{1}{2}\beta-\gamma-1}(\log n)^{\frac{1}{2}(\beta+3)}(n!)^{-\gamma}$$

immediately follow. (1.5) is also easy and thus, by (1.9)

(1.24)
$$\limsup_{n \to \infty} \frac{|X_{\infty} - X_{n-1}|}{B_n \{\log \log B_n^{-2}\}^{\frac{1}{2}}} \le \sqrt{2\gamma + 2}.$$

On the other hand, simple probability estimates show

$$(1.25) P\{X_{T_{n+1}-1} - X_{T_{n+1}-L_n-1} \ge \{(\beta+2)L_n\sigma_n^2 \log\log(L_n\sigma_n^2)^{-1}\}^{\frac{1}{2}} \big| \mathscr{F}_{T_n-1}\} \ge Kn^{-1}$$

for some constant $K = K(\beta, \gamma) > 0$. From (1.25), (1.24), (1.19) and the generalized Borel-Cantelli lemma ([9], corol. VII.2.6) it can be shown that

(1.26)
$$\limsup_{n \to \infty} \frac{|X_{\infty} - X_{n-1}|}{B_n \{ \log \log B_n^{-2} \}^{\frac{1}{2}}} \ge \limsup_{n \to \infty} \frac{|X_{T_{n+1}} - X_{T_{n+1}} - L_n^{-1}|}{\{L_n \sigma_n^2 \log \log (L_n \sigma_n^2)^{-1}\}^{\frac{1}{2}}}$$
$$\ge \sqrt{\beta + 2} \quad \text{w.p.1.}$$

Since β can be chosen as close to 2γ as desired, (1.24) and (1.26) substantiate our claim.

(ii) Even if (1.4)–(1.8) hold for any $\eta_1, \eta_2 > 0$ for almost all ω we may have

(1.27)
$$\limsup_{n\to\infty} \frac{|X_{\infty}-X_{n-1}|}{B_n} \leq C_0 \quad \text{w.p.1},$$

where C_0 is a certain finite constant. We shall not give the lengthy construction of such an example here. It relies on Kahane's solution [8] of Dvoretzky's

conjecture ([4]) about times where the law of the iterated logarithm fails for a Brownian motion $W(\cdot)$. Kahane shows that there exists a constant $C_1 < \infty$ and w.p.1 an everywhere dense set S such that for all $s \in S$

(1.28)
$$\limsup_{t \downarrow s} |s-t|^{-\frac{1}{2}} |W(t)-W(s)| \leq C_1.$$

(Kahane even proves (1.28) for the lim sup as $t \to s$, irrespective of t < s or t > s.) Kahane does not construct any s satisfying (1.28) as an (accessible) stopping time. To obtain an example satisfying (1.4)–(1.8) for all $\eta_1, \eta_2 > 0$, as well as (1.27), we constructed a sequence of stopping times τ_n for $W(\cdot)$ such that τ_n strictly increases to a limit s which satisfies (1.28), and such that for all $\eta > 0$ one has eventually

$$s-\tau_{n+1}\geq n^{-\eta}(s-\tau_n).$$

Thus, in general, it is not necessary that

(1.29)
$$\limsup_{n\to\infty} \frac{|X_{\infty}-X_{n-1}|}{B_n f(n)} > 0$$

for any sequence of normalizing constants $f(n) \uparrow \infty$. We have no simple modification of (1.4)–(1.8) which guarantees (1.29). Note, however, that [6] has a conclusion which is stronger than (1.29).

2. Proof of theorem

It is known (see [9], proposition VII. 2.3 c) that (1.4) implies the convergence to a finite limit of X_n a.e. on Ω_0 . Thus we only have to prove (1.9). For typographical convenience we shall often write B(S) instead of B_S . Fix $\theta > 1$ and $0 < \varepsilon < 1$ and introduce the following stopping times[†]:

$$S(n,r,0)=T_n$$

(2.1)
$$S(n, r, k+1) = T_{n+1} \wedge \inf \left\{ t > S(n, r, k) : \sum_{l=S(n, r, k)}^{l} v_l^2 \ge \varepsilon a_n^2 \theta' n^{-\eta_2} \right\},$$

$$r = 0, 1, \dots, \lceil (\log \theta)^{-1} n^{\eta_1} \rceil, \quad k = 0, 1, \dots, 2\lceil \theta \varepsilon^{-1} n^{\eta_2} \rceil + 2.$$

Set $\eta = \eta_1 + \eta_2 + 1$ and assume that

(2.2)
$$\sum_{m}^{\infty} Y_{l}(\omega) \ge \left\{ \sqrt{2\eta} (1 - \varepsilon)^{-1} + 4\sqrt{\varepsilon \eta \theta} \right\} B_{m}(\omega) \left\{ \log \log \frac{1}{B_{m}^{2}(\omega)} \right\}^{\frac{1}{2}}$$

 $^{^{\}dagger}$ $a \wedge b$ denotes the minimum of a and b.

for some $\omega \in \Omega_0$ and

$$(2.3) T_n \leq m < T_{n+1}.$$

Assume further that for this ω and n (1.4) as well as the inequalities in (1.7) and (1.8) hold. Then

(2.4)
$$B_{T_{n+1}}^2(\omega) \ge n^{-\eta_2} B_{T_n}^2(\omega),$$

and there exists an $0 \le r \le \{\log \theta\}^{-1} n^{\eta_1}$ for which

$$(2.5) a_n^2 \theta' \leq B^2(T_n) < a_n^2 \theta'^{+1}.$$

Moreover, if $S(n, r, j+2) < T_{n+1}$, then

$$\sum_{S(n,r,j) \leq l < S(n,r,j+2)} v_l^2 \geq \sum_{S(n,r,j) \leq l \leq S(n,r,j+1)} v_l^2$$

$$\geq \varepsilon a_l^2 \theta' n^{-\eta_2}.$$

so that either

$$(2.6) S(n,r,2j) \ge T_{n+1}$$

or

(2.7)
$$a_n^2 \theta^{r+1} > B^2(T_n) \ge \sum_{T_n \le l \le S(n,r,2j)} v_l^2 \ge j \varepsilon a_n^2 \theta^r n^{-\eta_2}.$$

Clearly (2.7) is impossible for $j > \theta \varepsilon^{-1} n^{\eta_2}$ and (2.6) must hold for any such j. Thus, by (2.3) there must exist a $k \le 2\theta \varepsilon^{-1} n^{\eta_2} + 2$ with

(2.8)
$$S(n, r, k) \leq m < S(n, r, k+1).$$

Of course (2.3) and (2.8) together imply $T_n \le S(n, r, k) < T_{n+1}$ and hence, by (2.4) and (2.5)

$$(2.9) a_n^2 \theta^{r+1} > B^2(T_n) \ge B^2(S(n,r,k)) \ge B^2(T_{n+1}) \ge B^2(T_n) n^{-\eta_2} \ge a_n^2 \theta^r n^{-\eta_2}.$$

Consequently, there must exist an integer

$$s \in [0, (\log \theta)^{-1} \eta_2 \log n] + 2$$

for which

$$(2.10) a_n^2 \theta^{r+s} n^{-\eta_2} \leq B^2(S(n,r,k)) < a_n^2 \theta^{r+s+1} n^{-\eta_2}.$$

Now, by virtue of (1.5), there exists a (deterministic) sequence $\delta_{\nu} \downarrow 0$ such that a.e. on Ω_0

$$(2.11) |Y_l(\omega)| \leq \delta_{\nu} B_l(\omega) \left\{ \log \log \frac{1}{B_l^2(\omega)} \right\}^{-\frac{1}{2}} \text{for all } l \geq T_{\nu}$$

and ν sufficiently large. Let δ_{ν} be fixed in this way and define for each fixed n, r, s^{\dagger}

$$u(x) = x^{\frac{1}{2}} \left\{ \log \log \frac{1}{x} \right\}^{-\frac{1}{2}}, \qquad 0 < x < 1,$$

$$Y_{l}^{+} = Y_{l}^{+}(\omega, n, r, s) = Y_{l}(\omega) I[Y_{l}(\omega) \le \delta_{n} u(a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}})],$$

$$Y_{l}^{-} = Y_{l}^{-}(\omega, n, r, s) = Y_{l}(\omega) I[Y_{l}(\omega) \ge -\delta_{n} u(a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}})].$$

Then for almost all $\omega \in \Omega_0$ for which (2.2), (2.3), (2.8) and (2.10) hold and large n, at least one of the events (2.12)–(2.14) must occur:

(2.12)
$$E(n) = \{ \omega \in \Omega_0 : (2.11) \text{ fails for } \nu = n \},$$

There exists a S(n, r, k) < t < S(n, r, k+1) with

(2.13)
$$\sum_{S(n,r,k)< l < t} Y_{l}^{-} \leq -2 \{ \varepsilon \eta a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}} \log n \}^{\frac{1}{2}},$$

(2.14)
$$\sum_{S(n,r,k)+1}^{\infty} Y_{l}^{+} = \sum_{S(n,r,k)< l < m} Y_{l}^{-} + \sum_{m}^{\infty} Y_{l} - Y_{m}I[m = S(n,r,k)]$$

$$\geq \left\{ \sqrt{2\eta} (1-\varepsilon)^{-1} + 4\sqrt{\varepsilon\eta\theta} - \delta_{n} \right\} B_{m} \left\{ \log\log\frac{1}{B_{m}^{2}} \right\}^{\frac{1}{2}}$$

$$-2\left\{ \varepsilon\eta a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}} \log n \right\}^{\frac{1}{2}}.$$

Note now that for almost all $\omega \in \Omega_0^{\dagger \dagger}$

(2.15)
$$\lim_{n\to\infty} (\log n)^{-1} \log \log B_{T_n}^{-2} = 1.$$

Indeed, by (1.6) and (1.7) for large n

$$\log \log B_{T_n}^{-2} \ge \log \log a_n^{-2} \exp(-n^{n_1}) \ge \log n + O(1),$$

and if (1.7) and (1.8) hold for $n \ge n_0(\omega)$, then

$$B_{T_n}^2 \ge (n-1)^{-\eta_2} B_{T_{n-1}}^2 \ge \cdots \ge \prod_{l=n_0}^{n-1} l^{-\eta_2} B_{n_0}^2(\omega) \ge \{(n-1)!\}^{-\eta_2} \{(n_0-1)!\}^{\eta_2} a_{n_0}^2$$

[†] I[] denotes the indicator of the event between square brackets.

^{††} As explained in an earlier footnote we assume without loss of generality that $\Omega_0 \cap \Omega_1 = \emptyset$.

and

$$\limsup (\log n)^{-1} \log \log B_{T_n}^{-2} \le \lim (\log n)^{-1} \log \log \{(n-1)!\}^{\eta_2} = 1.$$

Thus, for large enough n we will have

$$(1-\varepsilon)\log n \leq \log\log B_{T_n}^{-2} \leq \log\log B_{T_{n+1}}^{-2} \leq (1+\varepsilon)\log n$$

and also

$$(2.16) \quad (1-\varepsilon)\log n \le \log\log B^{-2}(S(n,r,k)) \le \log\log B_m^{-2} \le (1+\varepsilon)\log n.$$

For later use we point out that (2.15) and (1.7) imply that also a.e. on Ω_0

(2.17)
$$\lim_{n \to \infty} (\log n)^{-1} \log \log a_n^{-2} = 1.$$

Finally, we introduce

$$A_{i}^{2}(\omega) = A_{i}^{2}(\omega, n, r, k) = \sum_{S(n, r, k)+1}^{i} v_{i}^{2}(\omega),$$

and observe that if

$$(2.18) S(n, r, k) < t < S(n, r, k+1),$$

then, by virtue of (2.1),

$$(2.19) A_i^2(\omega, n, r, k) < \varepsilon a_n^2 \theta' n^{-\eta_2}.$$

It follows that the event (2.13) is contained in the event

$$\Gamma(n, r, k, s) = \left\{ \omega : \sum_{S(n, r, k) < l \le t} Y_{t}^{-}(\omega, n, r, s) \right.$$

$$\leq -\left\{ \varepsilon \eta a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}} \log n \right\}^{\frac{1}{2}} - \left\{ \varepsilon a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}} \right\}^{-\frac{1}{2}} (\eta \log n)^{\frac{1}{2}} A_{t}^{2}(\omega)$$
for some $t > S(n, r, k)$

Similarly (2.8)–(2.10) and (2.1) imply

$$B_m^2 \ge B^2(S(n,r,k)) - \varepsilon a_n^2 \theta' n^{-\eta_2} \ge (1-\varepsilon) B^2(S(n,r,k)) \ge (1-\varepsilon) a_n^2 \theta'^{+s} n^{-\eta_2}$$
 and (2.10) implies

$$A_{t}^{2}(\omega, n, r, k) \leq B^{2}(S(n, r, k)) \leq a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}}$$

Therefore, if (2.8)-(2.10) and (2.16) hold, the event (2.14) is contained in

$$\Delta(n, r, k, s) = \left\{ \omega : \sum_{S(n, r, k)+1}^{t} Y_{i}^{+}(\omega, n, r, s) \ge \{\sqrt{2\eta} + \sqrt{\varepsilon\eta}\} B(S(n, r, k)) (\log n)^{\frac{1}{2}} \right\}$$

$$\ge \frac{1}{2} (\sqrt{2\eta} + \sqrt{\varepsilon\eta}) \{a_{n}^{2} \theta^{r+s} n^{-\eta_{2}} \log n\}^{\frac{1}{2}} + \frac{1}{2} (\sqrt{2\eta} + \sqrt{\varepsilon\eta}) \{a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}}\}^{-\frac{1}{2}} (\log n)^{\frac{1}{2}} A_{i}^{2}(\omega)$$
for some $t > S(n, r, k)$.

It follows from the above arguments that up to a null set

 $\{\omega \in \Omega_0: (2.2) \text{ occurs for infinitely many } m\}$

(2.20)
$$\subset \{E(n) \text{ i.o.}\} \cup \left\{ \bigcup_{r,k,s} \Gamma(n,r,k,s) \text{ occurs for infinitely many } n \right\}$$

$$\cup \left\{ \bigcup_{r,k,s} \Delta(n,r,k,s) \text{ occurs for infinitely many } n \right\}.$$

To conclude the proof we show that

$$(2.21) \qquad \sum_{n} \sum_{r,k,s} \left(P\{\Gamma(n,r,k,s)\} + P\{\Delta(n,r,k,s)\} \right) < \infty$$

a.e. on Ω_0 , whenever

$$(2.22) \qquad \qquad \frac{1}{2}(\sqrt{2\eta} + \sqrt{\varepsilon\eta})^2(1+\varepsilon)^{-1}\theta^{-\frac{1}{2}} > \eta.$$

Since $P\{E(n) \text{ i.o.}\} = 0$ by the choice of δ_{ν} (see (2.11)), (2.20), (2.21) and the Borel-Cantelli lemma imply

$$\limsup_{m\to\infty} B_m^{-1} \left\{ \log\log\frac{1}{B_m^2} \right\}^{-\frac{1}{2}} \sum_{m=1}^{\infty} Y_i \leq \sqrt{2\eta} (1-\varepsilon)^{-1} + 4\sqrt{\varepsilon\eta\theta}$$

whenever (2.22) holds. Replacing Y_i by $-Y_i$ yields the same inequality for $-\Sigma Y_i$, so that (1.9) follows when we let $\theta \downarrow 1$, $\varepsilon \downarrow 0$. It remains to prove (2.21). We shall restrict ourselves to estimating $P\{\Delta(n, r, k, s)\}$, the estimate for $P\{\Gamma(n, r, k, s)\}$ being almost the same. For fixed n, r, k, s,

$$E\{Y_i^+ \mid \mathscr{F}_{i-1}\} \le E\{Y_i \mid \mathscr{F}_{i-1}\} = 0 \quad \text{and}$$

$$E\{(Y_i^+)^2 \mid \mathscr{F}_{i-1}\} \le v_i^2.$$

Thus, $\sum_{l=1}^{t} Y_{S(n,r,k)+l}^{+}$, $t=0,1,\cdots$, is a supermartingale with respect to the σ -fields $\mathcal{G}_{t} = \mathcal{F}_{S(n,r,k)+t}$, and if we write Z_{t} for $Y_{S(n,r,k)+l}^{+}$, then

$$E\{Z_l^2 \mid \mathcal{G}_{l-1}\} \leq v_{S(n,r,k)+l}^2.$$

Moreover

$$Z_{l} \leq c \equiv \delta_{n} \{ a_{n}^{2} \theta^{r+s+1} n^{-\eta_{2}} \}^{\frac{1}{2}} \{ (1-\varepsilon) \log n \}^{-\frac{1}{2}}$$

as soon as

(2.23)
$$\log \log \{a_n^2 \theta'^{+s+1} n^{-\eta_2}\}^{-1} \ge (1 - \varepsilon) \log n$$

(see the definition of Y_i^+). Now set

$$a = \frac{1}{2}(\sqrt{2\eta} + \sqrt{\varepsilon\eta})\{a_n^2\theta^{r+s}n^{-\eta_2}\log n\}^{\frac{1}{2}},$$

$$\lambda = (\sqrt{2\eta} + \sqrt{\varepsilon\eta})(1+\varepsilon)^{-1} \{a_n^2 \theta'^{+s+1} n^{-\eta_2}\}^{-\frac{1}{2}} (\log n)^{\frac{1}{2}}$$

and

$$\Phi_c(\lambda) = c^{-2} \{ \exp(\lambda c) - 1 - \lambda c \}.$$

Then

$$(2.24) P\{\Delta(n, r, k, s)\} \leq P\left\{\sum_{S(n, r, k)+1}^{t} Y_{l}^{+} \geq a + \frac{\Phi_{c}(\lambda)}{\lambda} A_{l}^{2} \text{ for some } t > S(n, r, k)\right\}$$

$$\leq P\left\{\bigcup_{t \geq 1} \left\{\sum_{l=1}^{t} Z_{l} \geq a + \frac{\Phi_{c}(\lambda)}{\lambda} \sum_{l=1}^{t} E\{Z_{l}^{2} \mid \mathcal{G}_{l-1}\}\right\}\right\}$$

as soon as

(2.25)
$$\lambda^{-1}\Phi_{c}(\lambda) \leq \frac{1}{2}(1+\varepsilon)\lambda.$$

(2.23) holds for large n by virtue of (2.17) and the restrictions on r, s, while (2.25) holds for large n because $\lambda c \rightarrow 0$. Finally by [9], pp. 154–155 or [12] pp. 299–302, the last member of (2.24) is bounded by

$$\exp - \lambda a = \exp -\frac{1}{2}(\sqrt{2\eta} + \sqrt{\varepsilon\eta})^2(1+\varepsilon)^{-1}\theta^{-\frac{1}{2}}\log n.$$

Since the triple (r, k, s) runs through at most

$$\{(\log \theta)^{-1}n^{\eta_1}+1\}\cdot\{2\theta\varepsilon^{-1}n^{\eta_2}+3\}\cdot\{(\log \theta)^{-1}\eta_2\log n+3\}$$

values, we see that for almost all $\omega \in \Omega_0$

$$\sum_{r,k,s} P\{\Delta(n,r,k,s)\} = O(n^{\eta_1+\eta_2}\log n \exp{-\frac{1}{2}(\sqrt{2\eta}+\sqrt{\varepsilon\eta})^2(1+\varepsilon)^{-1}\theta^{-\frac{1}{2}}\log n)}.$$

Thus, if (2.22) holds we have indeed

$$\sum_{n}\sum_{k}P\{\Delta(n,r,k,s)\}<\infty.$$

ACKNOWLEDGEMENT

We were led to this investigation by the discussion in Section 1.3 and the proof of proposition 3 in [5]. Our theorem can be used to give a simple alternative proof of proposition 3 in [5] (essentially the same observation is made in [7]). We are grateful to Professor Williams for giving us a copy of [5] before publication.

REFERENCES

- 1. A. D. Barbour, Tail sums of convergent series of independent random variables, Proc. Camb. Phil. Soc. 75 (1974), 361-364.
 - 2. L. Breiman, Probability, Addison-Wesley, 1968.
- 3. Y. S. Chow and H. Teicher, (1973), Iterated logarithm laws for weighted averages, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 26 (1973), 87-94.
- 4. A. Dvoretzky, On the oscillation of the Brownian motion process, Israel J. Math. 1 (1963), 212-214.
- 5. D. Foster and D. Williams, The Hawkins sieve and Brownian motion, to appear in Compositio Math. (1978).
- 6. C. C. Heyde, On central limit and iterated logarithm supplements to the martingale convergence theorems, J. Appl. Prob. 14 (1977), 758-775.
- 7. C. C. Heyde, A loglog improvement to the Riemann hypothesis for the Hawkins random sieve, Ann. Probability 6 (1978).
- 8. J.-P. Kahane, Sur l'irrégularité locale du mouvement brownien, C. R. Acad. Sci. Paris, Ser. A 278 (1974), 331-333.
 - 9. J. Neveu, Martingales a temps discret, Masson et Cie, 1972.
- 10. S. Orey and S. J. Taylor, How often on a Brownian path does the law of the iterated logarithm fail? Proc. London Math. Soc. (3) 28 (1974), 174-192.
- 11. W. F. Stout, A martingale analogue of Kolmogorov's law of the iterated logarithm, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 15 (1970), 279-290.
 - 12. W. F. Stout, Almost Sure Convergence, Academic Press, 1974.

DEPARTMENT OF MATHEMATICS
CORNELL UNIVERSITY
ITHACA, NEW YORK 14853 USA